Permutohedra and minimal matrices

نویسندگان

  • Shmuel Onn
  • Ernesto Vallejo
چکیده

The notions of minimality, π -uniqueness and additivity originated in discrete tomography. They have applications to Kronecker products of characters of the symmetric group and arise as the optimal solutions of quadratic transportation problems. Here, we introduce the notion of real-minimality and give geometric characterizations of all these notions for a matrix A, by considering the intersection of the permutohedron determined by A with the transportation polytope in which A lies. We also study the computational complexity of deciding if the properties of being additive, real-minimal, π -unique and minimal hold for a given matrix, and show how to efficiently construct some matrix with any of these properties. © 2005 Elsevier Inc. All rights reserved. AMS classification: 05A17; 15A36; 52A40; 52B12; 62H17; 68Q17; 90C05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Volumes of Hypersimplices , Root Systems and Shifted

This thesis consists of two parts. In the first part, we start by investigating the classical permutohedra as Minkowski sums of the hypersimplices. Their volumes can be expressed as polynomials whose coefficients the mixed Eulerian numbers are given by the mixed volumes of the hypersimplices. We build upon results of Postnikov and derive various recursive and combinatorial formulas for the mixe...

متن کامل

Faces of Generalized Permutohedra

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γvectors. These polytopes include permutohedra, associahedra, graphassociahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpretat...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

ar X iv : m at h / 06 09 18 4 v 2 [ m at h . C O ] 1 8 M ay 2 00 7 FACES OF GENERALIZED PERMUTOHEDRA

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005